

sp3s* and sp3d5s* Tight-binding Parameter Sets for GaAs, AlAs, InAs, GaSb, AlSb, InSb, GaP, AlP, InP for Quantum Dot Simulations

Gerhard Klimeck*, R. Chris Bowen, and Timothy B. Boykin#
Jet Propulsion Laboratory, California Institute of Technology
#University of Alabama in Huntsville

*Email: gekco@jpl.nasa.gov

Phone: (818) 354 2182

Web: http://hpc.jpl.nasa.gov/PEP/gekco

Revolutionary Computing and Sensing are Enabled by Nanoelectronics

4 Basic NASA Missions: Enabled by Technology

Example NASA Mission Requirements:

- Autonomous spacecraft
- In-situ data analysis
- On-board image processing
- => Beyond existing system technology

Device/System Requirements:

- Low power and weight, however massive computing and sensing
- Radiation hard devices
- => Beyond existing device technology

Nanoelectronics:

- Don't fight, utilize quantum behavior:
 - Quantized charge
 - Quantized energy
- Artificial Atoms & Molecules
- Custom optical transitions
- New computation architectures
- => Bottom-up 3-D, atomistic device simulation

High Performance Computing Group

Quantum Dot Simulation for Revolutionary Computing and Sensing

Opportunity:

- Nanoscale electronic structures can be built!
 - => Artificial Atoms / Molecules

Problem:

 The design space is huge: choice of materials, compositions, doping, size, shape.

Approach:

- Deliver a 3-D atomistic simulation tool
- Enable analysis of arbitrary crystal structures, atom compositions and bond/structure configurations.

NASA Relevance:

- 2-5µm Lasers and detectors
- High density, low power computation (logic and memory)
- Life signature biosensors

Impact:

- Low cost development of revolutionary technology.
- Narrow empirical/experimental search space

Collaborators:

 Ames, University of Alabama-Huntsville, Purdue

Global Optimization for Microelectronic Device Design Genetically Engineered NanoElectronic Structures: GENES

Objective:

- ¥ Optimize and synthesize electronic devices
- ¥Limit and focus number of experiments needed to produce design.

Approach:

- ¥ Use existing electromagnetic and electronic structure modeling codes
- ¥ Apply genetic algorithm for global optimization
- ¥ Use massively parallel platforms

Impact:

- ¥ Enable device optimization for microelectronic-based missions.
- ¥ Near Term:
 - ¥ Optimize devices.
- ¥ Long Term:
 - ¥ Provide instrument-system level optimization

gekco

High Performance Computing Group

Fabrication

Mapping of Orbitals to Bulk Bandstructure

Bulk Semiconductors are described by:

- Conduction and valence bands, bandgaps (direct, indirect), effective masses
- 10-30 physically measurable quantities

Tight Binding Models are described by:

- Orbital interaction energies.
- 15-30 theoretical parameters

Basic Genetic Algorithm

¥Genetic algorithm parameter optimization is based on:

¥Survival of good parameter sets

¥Evolution of new parameter sets

¥Survival of a diverse population

¥Optimization can be performed globally, rather than locally.

Basic Evolution Operations

¥Each set (Si) consists of several parameters (Pj)

¥The parameters Pj can be of different kinds: real, integers, symbols, .

Gross Exploration

Fine Tuning

¥Crossover explores different combinations of existing genes.

¥Creation of new gene values.

GENES - RTD Structural Analysis

¥Allow genetic algorithm to vary 5 different structural parameters:

- ¥3 Thicknesses: well, barrier, spacer
- ¥2 Dopings: low doped spacer, unintentional doping in center

- **¥Start from random population of 5** parameters.
- **¥Well width is larger than nominal.**
- **¥No intentional doping is larger than nominal.**

HPC

RTD Synthesis/Analysis CPU Requirements

¥Single current-voltage characteristic in a simple model:

¥30 minutes on a single CPU

¥Population: 200

¥Replacement: 63 / generation

¥Approximate number of Genes evaluated: 1000

¥Original distributions:

 $4N_1$ in $[1x10^{17}, 1x10^{19}]$, N_2 in $[1x10^{14}, 1x10^{16}]$).

 Υ_1 in [10,30], Υ_2 , Υ_3 in [6,26]

¥Total CPU time:

¥500hrs on one CPU or

¥8hrs on 64 CPUs

¥Optimization surface is not smooth!

¥Compare to an exhaustive search of 20x 20x20x30x30=72,000 combinations => 36,000 hrs

¥Have NOT compared to a line search.

What is known a bout Bulk Bandstructure?

$$(H_{el} + V_{atomic} + E)\Psi = 0$$

$$H_{el} \propto \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial x^2}$$

 $\Psi(r, E) = \Psi_0 e^{ikr}$ with dispersion E(k)

Bandstructure describes the propagation of plane waves in a material.

Need to solve Schr dinger Equation $\forall V_{\text{atomic}}$ includes effects of core atoms $\forall V_{\text{atomic}} = 0 = \text{free electron} = \sum E = \frac{\hbar^2}{2m^*} k^2$

Small areas of the Brillouin zone are known experimentally:

¥Masses / slopes and bandedges at symmetry points

¥Quantitative simulations must reproduce at least the bulk properties!

Fitting E(k) Relations in Tight-Binding

¥Do not have direct control over effective masses and conduction band edges

¥Fit orbital interaction energies

¥Need to choose orbitals and number of neighbors

There are lots of orbitals and lots of neighbors => many interaction energies

sp³s* Bandstructure Fitting

¥Open variables - interactions between 10 orbitals on neighboring atoms:

¥13 unconstrained interaction energies

¥2 constrained interaction energies

¥Simulation target:

¥List of 29 physical quantities taken from semiconductor data books

¥Associate a weight / importance with each of these quantities.

¥Minimize error between desired and obtained physical quantities.

¥Population: 3,000

¥Replacement: 5%= 150

¥Generations: 40,000

¥Total # of Genes: 6,003,000

¥Time needed per Gene: 0.5 sec

¥Total time needed: 833hrs for one CPU, 13 hrs for 64 CPUs

¥Compared to derivative based line search:

¥optimization surface is VERY rugged

¥line search gets stuck in nearest local minimum.

Momentum

Momentum

Semiconductor Compounds: cation: In, Ga, Al

anion: Sb, As, P

¥Match experimental data in various electron transport areas of the Brillouin zone:

¥Effective masses of electrons at Γ, X and L

¥Effective masses of holes at Γ

 \forall Bandedges at Γ , X and L

¥Each individual material poses a 15 dimensional fitting problem.

gekco

High Performance Computing Group

Semiconductor Compounds: cation: In, Ga, Al anion: Sb, As, P

dIIIOII. SD, AS, P ¥Match experimental data ir

¥Match experimental data in various electron transport areas of the Brillouin zone:

¥Effective masses of electrons at Γ, X and L

¥Effective masses of holes at Γ

YBandedges at Γ , X and L

¥Each individual material poses a 15 dimensional fitting problem.

Next:

¥Treat all materials at once

¥Expl.: In is the same in InSb, InAs, and InP.

¥6 atoms x 4 on-site energies

¥9 pairs x 7 off-site energies

=> 87 free parameters

¥Next 2: add more orbitals

Examples of 3D Confined Structures

Quantum Dots: Litho-based, GaAs/AlGaAs, InGaAs/InAlAs systems

Cylinder shaped M Reed et al, TI (1988)

Fullerenes, C60: Carbon based Electronic and mechanical appl.

Rice Univ., NASA Ames

Quantum Dots: Self-assembled, InAs on GaAs.

Pyramidal or dome shaped

R. Leon et al, JPL (1998)

Quantum Dots: Self-assembled Ge on Si.

Dome shaped

S. Williams et al. HP (1998)

Quantum Dots as Optical Detectors

Desensitizing QWIP to Polarization

- Problem:
 Quantum wells are "blind" to light impinging orthogonal to the detector surface.
- Standard Solution:Use gratings to turn polarization
- New Approach:
 Quantum dots have a built-in anisotropy and state quantization in all three dimensions
 - -> absorption at all angles

Quantum Wells: Absorption has strong incidence angle dependence

Standard Solution:

Grating

Quantum Dots: Absorption has weak incidence angle dependence

A More Fundamental Problem: How to Represent Materials on an Atomic Scale?

¥Need to include the crystal symmetry

¥Need to include the electronic properties of the host atoms: expl.: Ga,ln, As in a InAs/GaAs quantum dot.

¥Need to get at least the bulk bandstructure right before simulating nanostructures.

Accomplishments & Plans

1999 Accomplishments

Atomistic Tight-Binding Hamiltonian

Full crystal symmetry; s,p,d orbitals

Atomistic Strain Model

Atomic locations

Scale bond interactions

Parallel Lanczos Eigensolver

FLOPS scale $N^{1.1} \Rightarrow 10^6$ Atoms!

GUI: Client Server Tcl/Tk, SQL Database

Optical Interactions

Electric Dipole Transitions Absorption vs. Energy

2000 Plans

Physics

Hatree-Fock potential
Piezo-electric effects
Many-body via configuration interaction
Rate equation based transport

Software

Develop 3D visualization Shared-memory parallelization (OpenMP)

Quantum Dot Simulations

Future Vision

Atomistic Simulation Tool

- ¥ General Structure Input
- ¥ Orbital Basis Extends to Molecules
- ¥ Address CMOS Scaling Issues.

Quantum Dots Grading

Transport in Molecules

End of SIA Roadmap

Dopant Fluctuations in Ultra-scaled CMOS

Electron Transport in Exotic Dielectrics

